

Available online at www.sciencedirect.com

Journal of Hazardous Materials

Journal of Hazardous Materials 156 (2008) 348-355

www.elsevier.com/locate/jhazmat

Effects of sodium modification, different reductants and SO₂ on NO reduction by Rh/Al₂O₃ catalysts at excess O₂ conditions

Feng-Yim Chang^a, Ming-Yen Wey^{a,*}, Jyh-Cherng Chen^b

^a Department of Environmental Engineering, National Chung-Hsing University, Taichung, Taiwan, ROC ^b Department of Environmental Engineering, Hung-Kuang University, Taichung, Taiwan, ROC

Received 7 September 2007; received in revised form 29 November 2007; accepted 8 December 2007 Available online 22 January 2008

Abstract

Although many catalysts of NO reduction have been developed, the presence of excess O_2 and SO_2 significantly inhibits their performance when they are used to treat the incineration flue gas. To solve such problem, this study prepared new Rh/Al₂O₃ catalysts and investigated the effects of Na modification, SO_2 and different reductants. Experimental results indicated that the average removal efficiency of NO at such high O_2 concentrations exceeded 80% when the Rh/Al₂O₃ catalysts were used. CO was a better reductant than C_3H_6 and the best concentration ratio of reductant/NO was equal to 1. Adding Na to modify Rh/Al₂O₃ catalysts significantly enhanced the removal efficiency of NO from 80 to 99% at 250–300 °C, especially at relative high SO₂ concentrations. Unfortunately, Rh–Na/Al₂O₃ catalysts do not have long-time activities for NO reduction, possibly because of the formation of NaNO₃. Both Rh/Al₂O₃ and Rh–Na/Al₂O₃ catalysts have good performance for NO reduction, they can feasibly be used to reduce NO in the flue gas from waste incineration.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Catalyst; NO; Rh/Al2O3; Rh-Na/Al2O3; SO2

1. Introduction

NO is a major by-product of combustion processes and its emission from the incineration flue gas has caused public concern and regulatory scrutiny. Among the various technologies for controlling NO, the selective catalytic reduction (SCR) method using NH₃ as the reductant is the most effective. Since NH₃ in SCR processes may cause some problems of toxicity and corrosion, various reductants such as CO and C_3H_6 have been proposed to replace NH₃ [1–8].

Many catalysts have been developed for NO reduction. They can be divided into two types: noble metal catalysts and transition metal catalysts. Noble metal catalysts have higher activities than transition metal catalysts. Unlike conventional noble metal catalysts such as Pt and Pd, Rh catalysts have received considerable attentions because of their relative high activity and selectivity for NO. For example, three-way catalysts (TWCs) are usually used to control the exhaust of gasoline vehicles and

0304-3894/\$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jhazmat.2007.12.026

Rh is one of the major active metals of TWCs. Nevertheless, Rh catalysts are rarely been applied to treat the incineration flue gas [9].

The modification of catalysts has been proposed recently to improve their activity and selectivity. By adding some additives, the surface properties as well as the adsorption and reaction activity of catalysts can be enhanced. Macleod et al. [10] found that the activity and selectivity of Rh/Al₂O₃ catalysts for NO + C₃H₆ reactions were excellent without O₂, and that the optimum Na content for modifying Rh/Al₂O₃ was 4–8 wt%. However, the performance of Rh/Al₂O₃ catalysts was decreased when oxygen (0.78% O₂) was present [11].

The effects of SO₂ on the NO reduction have been reported. Summers and Baron [12] indicated that Rh catalysts were more active for NO reduction in the presence of SO₂ than were other noble catalysts. Efthimiadis et al. [5,13] observed that the presence of SO₂ in the NO + $C_3H_6 + 5\%$ O₂ gas mixture increased the activity of Rh/Al₂O₃ catalysts for NO reduction because of the formation of sulfates. Although SO₂ has been verified to enhance the NO conversion over Rh/Al₂O₃ catalysts, the effects of Na addition and SO₂ on Rh–Na/Al₂O₃ catalysts in excess oxygen have not been extensively investigated.

^{*} Corresponding author. Tel.: +886 4 22852455; fax: +886 4 22862587. *E-mail address:* mywey@dragon.nchu.edu.tw (M.-Y. Wey).

The flue gas from waste incineration always contains certain amounts of O_2 (6%) and SO_2 (20–200 ppm). New catalysts that can tolerate such conditions and have good activities for NO reduction must be developed. Therefore, this study prepares Rh/Al₂O₃ catalysts for NO reduction in simulated incineration flue gases that contain different concentrations of SO_2 and O_2 . The effects of Na modification, reductants CO and C_3H_6 , the concentration ratio of reductant/NO and SO_2 concentrations on the activity and stability of Rh/Al₂O₃ catalysts were also evaluated.

2. Experimental

2.1. Catalyst preparation

The Al₂O₃ pellets (Alfa Aesar, BET surface area: $90 \text{ m}^2 \text{ g}^{-1}$) were crushed and sieved into particles with sizes of between 350 and 420 µm to serve as the supports. The loading weight of active metal Rh was 1% and it was coated on the supports by the incipient wetness impregnation method. Rh(NO₃)₃·2H₂O and NaNO₃ were chosen as the precursors of active metal Rh and modifier Na, respectively. To compare the effects of Na modification on the performances of 1%Rh/Al₂O₃, 1%Rh–6%Na/Al₂O₃ and 6%Na/Al₂O₃ were prepared and tested. The concentration of Na added to the catalysts was determined to be 6 wt% according to the results of previous study [10], in which the optimum Na content for 1%Rh/Al₂O₃ modification was in the range of 4–8 wt%. After the impregnation process, these catalysts were dried at 105 °C for 6 h and calcined at 500 °C for 6 h in air.

2.2. Activity test

Since the flue gas from waste incineration usually has complex pollutants that are harmful to the catalysts, this study aims to clarify the performance of 1%Rh/Al₂O₃ and 1%Rh–6%Na/Al₂O₃ catalysts for NO reduction under simu-

lated conditions that are similar to those of incineration flue gas. The test was performed in a fixed-bed reactor filled with 0.5 g catalyst. The feed gas mixture contained 200 ppm NO, 200–600 ppm CO/C₃H₆, 0–500 ppm SO₂, 6% O₂ and N₂. The total flow rate was 600 ml/min, and the corresponding space velocity was 70,000 h⁻¹. The activity test was examined over the temperature range of 150–400 °C. The concentrations of inlet and outlet gases (O₂, CO, CO₂, NO, SO₂ and C₃H₆) were continuously measured by a stack gas analyzer (HORIBA VIA-510) that was equipped with chemiluminescence (NO), electrochemistry (O₂), non-dispersive infrared (SO₂, CO and CO₂) detectors and a gas chromatographer that was equipped with a flame ionization detector (C₃H₆). Fig. 1 shows the diagram of catalytic reaction system.

2.3. Catalyst characterization

The Brunauer–Emmett–Teller (BET) surface area and pore size diameter of catalysts were determined by N₂ sorption at 77 K using a vacuum volumetric apparatus (Micromeritics Gemini V2.00). A scanning electron microscopy (SEM) was used to observe the micrographs of catalysts. The species of supports and catalysts were identified by an X-ray powder diffractometer (XRPD) (SIEMENS D5000) with a Cu-K α radiation source at 30 kV and 20 A. The diffraction patterns were manually analyzed using the Joint Committee on Powder Diffraction Standards (JCPDS). The X-ray photoelectron spectroscopy (XPS) analyses were carried out by a VG Escalab 210 spectrometer with an Al-K α X-ray source at 1486.6 eV.

3. Results and discussion

3.1. Characterization of catalysts

Table 1 lists the results of BET surface areas and pore size diameters of catalysts. Adding 6 wt% Na to $1\% \text{Rh/Al}_2\text{O}_3$ cata-

Fig. 1. Schematic of fixed-bed reaction system for activity test: (1) mass flow controller; (2) reactor; (3) temperature controller; (4) thermocouple; (5) flue gas analyzer; (6) GC-FID; (7) data output.

Table 1
Surface area and pore size diameter of fresh and reacted catalyst

Catalysts	BET surface area $(m^2 g^{-1})$	Average pore size diameter (4 V/A by BET) (Å)	
Al ₂ O ₃ (support)	90	18.41	
Rh/Al ₂ O ₃ (fresh)	81	18.40	
Rh/Al ₂ O ₃ (0 ppm SO ₂) ^a	85	18.41	
Rh/Al ₂ O ₃ (200 ppm SO ₂)	85	18.40	
Rh/Al ₂ O ₃ (500 ppm SO ₂)	84	18.46	
Rh-Na/Al ₂ O ₃ (fresh)	41	18.72	
Rh–Na/Al ₂ O ₃ (0 ppm SO ₂)	50	18.72	
$Rh-Na/Al_2O_3$ (200 ppm SO_2)	52	18.74	
$Rh-Na/Al_2O_3$ (500 ppm SO ₂)	40	18.74	
Na/Al ₂ O ₃ (fresh)	44	18.77	
Na/Al ₂ O ₃ (0 ppm SO ₂)	37 (37) ^b	18.65 (18.65) ^b	

^a Reaction condition: [NO] = 200 ppm; [CO] = 200 ppm; $[O_2] = 6\%$, 250 °C and 120 min.

^b Duplicate analysis.

lysts significantly decreased the BET surface areas of catalysts from 81 to $41 \text{ m}^2 \text{ g}^{-1}$, and increased the pore size diameter from 18.41 to 18.72 Å. As shown in Fig. 2(a) and (b), the surfaces of Rh/Al₂O₃ catalysts comprised of dense and packed particles with a diameter of 150 nm, and the surfaces of Rh–Na/Al₂O₃ catalysts were covered with smooth and dispersive melted particles. Since the melting point of Na is lower (97.81 °C), many melts were formed when the Rh/Al₂O₃ catalysts were coated with Na and calcined at 500 °C for 6 h. The

Fig. 2. SEM images (10,000 \times and 30,000 $\times)$ of (a) Rh/Al_2O_3 and (b) Rh–Na/Al_2O_3 catalysts.

Fig. 3. XRD patterns of the catalysts: (a) Al_2O_3 ; (b) Rh/Al_2O_3 ; (c) $Rh-Na/Al_2O_3$; (d) Na/Al_2O_3 . (\star): Na; (\bullet): γ -Al₂O₃.

particle sizes of Rh–Na/Al₂O₃ catalysts were larger than those of Rh/Al₂O₃ catalysts and their BET surface areas were lower. Table 1 also indicates that the BET surface areas of reacted Rh/Al₂O₃ and Rh–Na/Al₂O₃ catalysts were slightly changed after they underwent the tests with SO₂ gas. These phenomena were attributed to the formation of some and their being adsorbed in the pore structures of catalysts during the activity tests [14].

Fig. 3 shows the XRD spectra of Rh/Al₂O₃, Rh–Na/Al₂O₃, Na/Al₂O₃ and Al₂O₃. The XRD patterns of every sample had peaks of γ -Al₂O₃ crystallites (2 θ of 31.937, 45.765 and 66.760), and those of Na/Al₂O₃ and Rh–Na/Al₂O₃ catalysts had the peak of Na crystallite (2 θ of 29.420). However, the XRD patterns contained no Rh crystallite peak because the concentration of Rh was lower than the XRD detection limit.

Table 2 lists the results of XPS analyses for Rh/Al₂O₃ and Rh–Na/Al₂O₃ catalysts before and after activity tests. The binding energy (BE) of Al(2p) for fresh and reacted Rh/Al₂O₃ and Rh–Na/Al₂O₃ catalysts were similar to that for Al₂O₃ in the literature [15]. The BE of Rh(3d_{5/2}) was 308–309 eV for Rh₂O₃, which was attributed to Rh³⁺ [16,17]. This result reveals that the active metal Rh of Rh/Al₂O₃ and Rh–Na/Al₂O₃ catalysts remained in the oxidation state, so they exhibited good activity for NO reduction even when SO₂ was present. For the catalysts after the activity tests, the BE of S(2p) at 165–168 eV and 169.4 eV were identical to those of SO₃²⁻ and SO₄²⁻, respectively [17]. The BE of N(1s), 397–399 eV and 399–407 eV, corresponded to N³⁻ and NO⁺, NO₂⁻, NO₃⁻, respectively [17,18]. These results demonstrated the possibility of the for-

Table 2
Results of XPS analyses for the catalysts

Catalysts	Binding energy (eV)					
	Al(2p)	Rh(3d _{5/2})	Na(1s)	N(1s)	S(2p)	
Rh/Al ₂ O ₃ (fresh)	74.8	308.6	_	_	_	
Rh/Al_2O_3 ($C_3H_6 + 0 ppm SO_2$)	74.8	308.6	_	399.2	_	
$Rh/Al_2O_3 (C_3H_6 + 100 \text{ ppm } SO_2)$	74.4	308.8	_	401.4	167.2	
Rh/Al_2O_3 (CO + 0 ppm SO ₂)	74.6	308.4	_	399.4	-	
Rh/Al_2O_3 (CO + 200 ppm SO ₂)	74.4	308.4	_	401.6	165.8	
Rh/Al_2O_3 (CO + 500 ppm SO ₂)	74.4	308.2	_	400.0	169.4	
Rh–Na/Al ₂ O ₃ (fresh)	74.2	308.4	1069.8	_	_	
$Rh-Na/Al_2O_3$ ($C_3H_6 + 0 ppm SO_2$)	74.2	309.2	1070.2	399.4	-	
$Rh-Na/Al_2O_3$ (CO + 0 ppm SO ₂)	74.6	309.0	1070.4	397.6	_	
$Rh-Na/Al_2O_3$ (CO + 200 ppm SO ₂)	74.2	308.6	1069.6	406.8	168.0	
Rh–Na/Al ₂ O ₃ (CO + 500 ppm SO ₂)	74.0	308.8	1070.0	401.0	166.2	

Fig. 4. Effects of reductant concentrations on NO conversion as a function of temperature. Reaction condition: $[NO] = 200 \text{ ppm}; [C_3H_6] = [CO] = 200-600 \text{ ppm}; [O_2] = 6\%$; catalyst weight = 0.5 g.

mation of NaNO₃, Na₂SO₄ and Al₂(SO₄)₃ during the catalytic reactions.

3.2. Effect of concentration ratio of reductant/NO

Fig. 4 shows the conversion of NO by Rh/Al_2O_3 , $Rh-Na/Al_2O_3$ and Na/Al_2O_3 catalysts with different concentration ratios of reductant/NO. The composition of the feeding gas mixture was 200 ppm NO, 200–600 ppm CO, 200–600 ppm C_3H_6 , 6% O_2 and balanced as carrier gas N_2 . As the concentration ratio of reductant/NO increased from 1 to 3, the curves of NO conversions versus operating temperature exhibited similar trends. The maximum NO conversions of Rh/Al_2O_3 and $Rh-Na/Al_2O_3$ catalysts were both achieved at the concentration ratios of C_3H_6/NO and CO/NO equal to 1. Under the same conditions, Na/Al_2O_3 had relative lower NO conversion.

Fig. 5. Effects of reductant concentrations on CO conversion as a function of temperature: (a) CO/NO = 1; (b) CO/NO = 2; (c) CO/NO = 3. Reaction condition: [NO] = 200 ppm; [CO] = 200, 400 and 600 ppm; $[O_2] = 6\%$; catalyst weight = 0.5 g.

Some tests were carried out with only one reductant (CO) and different CO/NO concentration ratios to understand the oxidation efficiency of reductants (Fig. 5(a)-(c)). The results indicate that Rh/Al₂O₃ catalysts offered very good CO oxidation efficiency even as the CO concentration was increased from 200 to 600 ppm. No residual CO remained in the flue gas. The reaction temperature for Rh–Na/Al₂O₃ catalysts must be higher than 250 °C to ensure CO conversion. The curves of CO conversion version versus operating temperature were similar at different concentration ratios of reductant/NO. As expected, Na/Al₂O₃ did not have oxidation activity on CO conversion, even when the concentration ratio of CO/NO equal to 1 (Fig. 5(a)).

3.3. Effect of Na modification

The effects of Na modification and different reaction temperatures on the NO conversion are shown in Fig. 4. The operating temperatures were controlled in the range of 150-400 °C. The maximum NO conversions of Rh/Al₂O₃ catalysts with C₃H₆ or CO reductant were near 80% at 250 °C. This result reveals that Rh/Al₂O₃ catalysts had good reduction ability at lower temperatures and relative high oxygen conditions. Na/Al₂O₃ did not exhibit any activity on the NO conversion even when the reaction temperature was increased to 400 °C. When Na was added to modify the Rh/Al₂O₃ catalysts, the NO conversion increased to near 100% at 250-300 °C and the reaction window was widened to 300 °C. The Na-induced increase of NO conversion is ascribed to the enhancements of NO adsorption and dissociation on the surfaces of catalysts [10]. However, the NO conversion of Rh/Al₂O₃ catalysts was slightly suppressed by Na modification at a lower reaction temperature of 200 °C. The possible reason is the active sites of catalysts being blocked by Na compounds [10]. Fig. 5 also indicates that the CO conversions by Rh-Na/Al₂O₃ catalysts were decreased as the operating temperatures were lower than 250 °C. On the contrary, the CO conversions by Rh/Al₂O₃ catalysts approached 100% and remained stable at 150–400 $^{\circ}$ C.

3.4. Effect of reductant

Figs. 6 and 7 show the NO conversion with reductants C_3H_6 and CO, respectively, over Rh/Al₂O₃ and Rh–Na/Al₂O₃ catalysts. The reaction temperature was controlled at 250 °C for Rh/Al₂O₃ catalysts and 250 and 300 °C for Rh–Na/Al₂O₃ catalysts. The reaction time was continued for 120 min to evaluate the long-time performance and stability of each catalyst. With C₃H₆ reductant, the NO conversions of Rh/Al₂O₃ catalysts at 250 °C could reach 80% and keep stable (Fig. 6). The possible mechanism for the C₃H₆ + O₂ + NO reaction is as follows. The reaction gas NO is adsorbed on the active sites of Rh/Al₂O₃ catalysts, forming N(a) and O(a) (Eq. (1)) [6]. The reductant C₃H₆ firstly reacts with O₂ to form CO which is then adsorbed on the active sites (Eqs. (2) and (3)), before reacting with N(a) to form NCO(a) (Eq. (4)) [5]. Finally NCO(a) reacts with NO(a) to form N₂ and CO₂ (Eq. (5)) [5,6].

$$NO \rightarrow NO(a) \rightarrow N(a) + O(a)$$
 (1)

Fig. 6. Effects of C_3H_6 reductant on the conversions of NO over Rh/Al_2O_3 and $Rh-Na/Al_2O_3$ catalysts. Reaction condition: [NO] = 200 ppm; $[C_3H_6] = 200 \text{ ppm};$ $[O_2] = 6\%;$ catalyst weight = 0.5 g.

 $C_3H_6 + O_2 \rightarrow [CxHyOz] \rightarrow COx(CO + CO_2) + H_2O$ (2)

 $CO \rightarrow CO(a)$ (3)

$$N(a) + CO(a) \rightarrow NCO(a)$$
 (4)

$$NCO(a) + NO(a) \rightarrow N_2 + CO_2$$
(5)

Fig. 7. Effects of CO reductant on the conversions of NO and CO over Rh/Al_2O_3 catalysts. Reaction condition: [NO] = 200 ppm; [CO] = 200 ppm; [O₂] = 6%; catalyst weight = 0.5 g.

For Rh–Na/Al₂O₃ catalysts, the NO conversion increased to near 100% and kept stable for 10 min at 250 and 300 °C. When the reaction time exceeded 20 min, the NO conversion decayed to 51 and 25% at 250 and 300°C, respectively. Although Na modification has been proposed to enhance the performances of Rh/Al₂O₃ catalysts on NO reduction in the absence of oxygen, the results were quite different as oxygen (6%) was present. The decrease of NO reduction by Na modification may be related to the formation of NaNO₃. Since NO may react with O_2 to form NO₂ or NO₃ on the active sites [19,20], the adsorbed NO₃ can react with Na to form NaNO3. The adsorbed NO3 cannot react with other materials on the surfaces of catalysts, so the performance of Na modified Rh/Al2O3 catalysts becomes worse. Additionally, C₃H₆ prefers to react with oxygen rather than NO at high temperature and under high oxygen conditions, the NO conversion is therefore decreased.

For CO reductant, the NO conversions of Rh/Al₂O₃ catalysts and Rh–Na/Al₂O₃ catalysts have similar trends with C₃H₆ reductant (Fig. 7). The Rh/Al₂O₃ catalysts have 80% NO conversion and 100% CO conversion. The possible reaction pathway is similar to that given by above Eqs. (1) and (3)–(5). The initial conversion of NO by Rh–Na/Al₂O₃ catalysts was 99% but this value remained stable for only 20 min. It had decreased from 99 to 80% after 20 min due to the formation of NaNO₃. After 40 min, the NO conversions were near 80 and 60% at 250 and 300 °C, respectively. Comparing the NO conversions with different reductants, the use of CO not only had higher NO conversion but also had better stability at 250 or 300 °C than C₃H₆. The possible reason for this difference is that CO reductant can react with NO immediately while C₃H₆ reductant needs to transform to CO before NO reduction can proceed.

3.5. Effect of SO₂

The effects of different SO₂ concentrations on Rh/Al₂O₃ catalysts are shown in Figs. 8 and 9. With C_3H_6 reductant, the NO conversion did not change significantly when 100 ppm SO₂ was contained in the feed gas (Fig. 8). The results also indicate that the SO₂ conversion reached 100% and kept stable for 120 min.

Fig. 8. Effects of SO₂ on the conversions of NO and SO₂ over Rh/Al₂O₃ catalysts. Reaction condition: [NO] = 200 ppm; $[C_3H_6] = 200 \text{ ppm}$; $[SO_2] = 100 \text{ ppm}$; $[O_2] = 6\%$; catalyst weight = 0.5 g.

Fig. 9. Effects of different concentrations of SO₂ on the conversions of NO, CO and SO₂ over Rh/Al₂O₃ and Rh–Na/Al₂O₃ catalysts. Reaction condition: $[NO] = 200 \text{ ppm}; [SO_2] = 100, 200 \text{ and } 500 \text{ ppm}; [O_2] = 6\%;$ catalyst weight = 0.5 g.

Since the SO_2 is adsorbed on the catalysts and oxidized to SO_3 , the SO₃ reacts with the supports to form aluminum sulfate [5]. Rh is active for not only the reduction of NO but also the oxidation of SO₂. Fig. 9 displays the conversions of NO, CO and SO₂ as functions of reaction time for Rh/Al₂O₃ catalysts with CO reductant. The concentrations of SO₂ were controlled at 200 and 500 ppm and the reaction temperature was 250 °C. The conversions of NO did not change with 200 ppm SO₂, but decreased to 68% after 80 min with 500 ppm SO₂. From the results of XPS analyses, some $\mathrm{SO_4}^{2-}$ species were found on the surface of Rh/Al₂O₃ catalysts as the feed gas contained excess oxygen and 500 ppm SO_2 . The abundant SO_2 were adsorbed on the catalysts and reacted to form SO_3^{2-} . Since the active sits of catalysts were occupied by the adsorbed SO_3^{2-} , the NO conversion was thus decreased. This inference is supported by the work of Efthimiadis et al. [5], who found that more SO₂ than NO was absorbed on the active sites of catalysts. However, the conversion of SO₂ was very high (near 100%) and remained stable for 120 min even though the concentration of SO_2 in the feed gas was increased

to 500 ppm. The CO conversion was also high and stable at different concentrations of SO_2 .

Fig. 9 shows the effects of SO₂ concentrations (100, 200 and 500 ppm) on Rh–Na/Al₂O₃ catalysts as functions of reaction time. The addition of Na in Rh/Al₂O₃ catalysts still promoted the initial conversion of NO (99%) with CO reductant at different SO₂ concentrations. When the reaction time was increased to 120 min, the NO conversions decreased slightly from 80 to 70, 76 and 75% at 100, 200 and 500 ppm SO₂, respectively. According to the results of XPS analyses (Table 2), NO₃⁻ and SO₃²⁻ were identified on the surfaces of Rh–Na/Al₂O₃ catalysts. These species may react with Na to form NaNO₃ and Na₂SO₄ and cause the NO conversions decreased. On the other hand, the conversions of CO and SO₂ over Rh–Na/Al₂O₃ catalysts were high and stable. Similar to the results of Rh/Al₂O₃ catalysts, different concentrations of SO₂ did not have significant effect on the conversions of CO and SO₂.

Totally speaking, Rh/Al₂O₃ catalysts have good ability for NO reduction with CO reductant in the presences of SO₂ and excess O₂. The NO conversion was high and stable at $0-200 \text{ ppm SO}_2$ but decreased at 500 ppm SO₂. Fortunately, the concentration of SO₂ in the flue gas from waste incineration is usually lower than 200 ppm. Rh/Al₂O₃ catalysts are effective for NO reduction under such flue gas conditions. Adding Na to Rh/Al₂O₃ catalysts can significantly improve the removal efficiency of NO at 250–300 °C and especially at relative high SO₂ concentrations. The Rh–Na/Al₂O₃ catalysts are also suggested to use under such flue gas conditions.

4. Conclusion

The catalytic reduction of NO with CO and C_3H_6 were carried out by Rh/Al₂O₃ and Rh–Na/Al₂O₃ catalysts in the simulated flue gas containing excess oxygen and different concentrations of SO₂. Rh/Al₂O₃ catalysts had good performances for NO reduction with CO reductant in the presences of SO₂ and excess oxygen. Adding Na to modify Rh/Al₂O₃ catalysts can increase the NO conversion and widen the reaction temperature windows and improved the performances at high SO₂ conditions. However, Rh–Na/Al₂O₃ catalysts do not have long-time activities for NO reduction due to the formations of NaNO₃ and Na₂SO₄.

References

- B. Wen, M. He, Study of the Cu–Ce synergism for NO reduction with CO in the presence of O₂, H₂O and SO₂ in FCC operation, Appl. Catal. B 37 (2002) 75–82.
- [2] M. Haneda, Y. Pusparatu, I. Kintaichi, M. Nakamura, T. Sasaki, H. Fujitani, Hamada, Promotional effect of SO₂ on the activity of Ir/SiO₂ for NO reduction with CO under oxygen-rich conditions, J. Catal. 229 (2005) 197–205.
- [3] L.F. Chen, G. González, J.A. Wang, L.E. Noreña, A. Toledo, S. Castillo, M. Morán-Pineda, Surfactant-controlled synthesis of Pd/Ce_{0.6}Zr_{0.4}O₂ catalyst for NO reduction by CO with excess oxygen, Appl. Surf. Sci. 243 (2005) 319–328.
- [4] M. Haneda, H. Kudo, Y. Nagao, T. Fujitani, H. Hamada, Enhanced activity of Ba-doped Ir/SiO₂ catalyst for NO reduction with CO in the presence of O₂ and SO₂, Catal. Commun. 7 (2006) 423–426.
- [5] E.A. Efthimiadis, S.C. Christoforou, A.A. Nikolopoulos, I.A. Vasalos, Selective catalytic reduction of NO with C₃H₆ over Rh/alumina in the presence and absence of SO₂ in the feed, Appl. Catal. B 22 (1999) 91–106.

- [6] T.I. Halkides, D.I. Kondarides, X.E. Verykios, Mechanistic study of the reduction of NO by C₃H₆ in the presence of oxygen over Rh/TiO₂ catalysts, Catal. Today 73 (2002) 213–221.
- [7] I.V. Yentekakis, V. Tellou, G. Botzolaki, I.A. Rapakousios, A comparative study of the $C_3H_6 + NO + O_2$, $C_3H_6 + O_2$ and $NO + O_2$ reactions in excess oxygen over Na-modified Pt/ γ -Al₂O₃ catalysts, Appl. Catal. B 56 (2005) 229–239.
- [8] D. Niakolas, Ch. Andronikou, Ch. Papadopoulou, H. Matralis, Influence of metal oxides on the catalytic behavior of Au/Al₂O₃ for the selective reduction of NOx by hydrocarbons, Catal. Today 112 (2006) 184–187.
- [9] J.C. Chen, M.Y. Wey, C.L. Yeh, Y.S. Liang, Simultaneous treatment of organic compounds, CO, and NOx in the incineration flue gas by three-way catalyst, Appl. Catal. B 48 (2004) 25–35.
- $[10] N. Macleod, J. Isaac, R.M. Lambert, Sodium promotion of the NO+C_3H_6 \\ reaction over Rh/\gamma-Al_2O_3 catalysts, J. Catal. 193 (2000) 115–122.$
- [11] N. Macleod, J. Isaac, R.M. Lambert, A comparison of sodium-modified Rh/γ-Al₂O₃ and Pd/γ-Al₂O₃ catalysts operated under simulated TWC conditions, Appl. Catal. B 33 (2001) 335–343.
- [12] J.C. Summers, K. Baron, The effects of SO₂ on the performance of noble metal catalysts in automobile exhaust, J. Catal. 57 (1979) 380–389.
- [13] E.A. Efthimiadis, G.D. Lionta, S.C. Christoforou, I.A. Vasalos, The effect of CH₄, H₂O and SO₂ on the NO reduction with C₃H₆, Catal. Today 40 (1998) 15–26.
- [14] Z. Huang, Z. Zhu, Z. Liu, Combined effect of H₂O and SO₂ on V₂O₅/AC catalysts for NO reduction with ammonia at lower temperatures, Appl. Catal. B 39 (2002) 361–368.
- [15] M. Zimowska, J.B. Wagner, J. Dziedzic, J. Camra, B. Borzęcka-Prokop, M. Najbar, Some aspects of metal-support strong interactions in Rh/Al₂O₃ catalyst under oxidising and reducing conditions, Chem. Phys. Lett. 417 (2006) 137–142.
- [16] F. Figueras, J.L. Flores, G. Delahay, A. Giroir-Fendler, A. Bourane, J.-M. Clacens, A. Desmartin-Chomel, C. Lehaut-Burnouf, Bifunctional mechanism for the selective catalytic reduction of NOx on Rh/sulfated titania, J. Catal. 232 (2005) 27–33.
- [17] The Surface Analysis Forum, Database of Auger Parameter Energies, 2001. http://www.uksaf.org/data/table.html.
- [18] F. Honda, K. Hirokawa, X-ray photoelectron spectroscopic observation of nitrogen-containing gases adsorbed at high pressures on some transition metals, J. Electron. Spectrosc. Relat. Phenom. 10 (1977) 125–136.
- [19] T. Tanaka, T. Okuhara, M. Misono, Intermediacy of organic nitro and nitrite surface species in selective reduction of nitrogen monoxide by propene in the presence of excess oxygen over silica-supported platinum, Appl. Catal. B 4 (1994) L1–L9.
- [20] N. Takahashi, H. Shinjoh, T. Iijima, T. Suzuki, K. Yamazaki, K. Yokota, H. Suzuki, N. Miyoshi, S. Matsumoto, T. Tanizawa, T. Tanaka, S. Tateichi, K. Kasahara, The new concept 3-way catalyst for automotive lean-burn engine: NO_x storage and reduction catalyst, Catal. Today 27 (1996)63–69.